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 This is the fi rst in a series of two articles that look 
at the lessons for clinical medicine from systems 
biology.

  Since Descartes and the 
Renaissance, science, including 
medicine, has taken a distinct 

path in its analytical evaluation of the 
natural world [1,2]. This approach 
can be described as one of “divide 
and conquer,” and it is rooted in the 
assumption that complex problems 
are solvable by dividing them into 
smaller, simpler, and thus more 
tractable units. Because the processes 
are “reduced” into more basic units, 
this approach has been termed 
“reductionism” and has been the 
predominant paradigm of science over 
the past two centuries. Reductionism 
pervades the medical sciences and 
affects the way we diagnose, treat, and 
prevent diseases. While it has been 
responsible for tremendous successes 
in modern medicine, there are limits 
to reductionism, and an alternative 
explanation must be sought to 
complement it.

  The alternative explanation that 
has received much recent attention, 
due to systems biology, is the systems 
perspective (Table 1). Rather than 
dividing a complex problem into 
its component parts, the systems 
perspective appreciates the holistic and 
composite characteristics of a problem 
and evaluates the problem with the use 
of computational and mathematical 
tools. The systems perspective is rooted 
in the assumption that the forest 
cannot be explained by studying the 
trees individually. 

  In order for a systems perspective to 
be fully appreciated, however, we must 
fi rst recognize the reductionist nature 
of medical science and understand its 
limitations. For this reason, the fi rst 
article in this series is dedicated to 
examining the reductionist approach 

that pervades medicine and to 
explaining how a systems approach 
(as advocated by systems biology) may 
complement it. In the second article, 
we aim to provide a more practical 
discussion of how a systems approach 
would affect clinical medicine. We hope 
that these discussions can stimulate 
further inquiry into the clinical 
implications of systems principles.

  Current Medical Science
  While the  implementation  of clinical 
medicine is systems-oriented, the 
science of clinical medicine is 
fundamentally reductionist. This is 
shown in four prominent practices 
in medicine: (1) the focus on a 
singular, dominant factor, (2) 
emphasis on homeostasis, (3) inexact 
risk modifi cation, and (4) additive 
treatments.

   Focus on a singular factor.  When the 
human body is viewed as a collection 
of components, the natural inclination 
of medicine is to isolate the single 
factor that is most responsible for 
the observed behavior. Much like a 
mechanic who repairs a broken car by 
locating the defective part, physicians 
typically treat disease by identifying 
that isolatable abnormality. Implicit 
within this practice is the deeply rooted 
belief that each disease has a potential 
singular target for medical treatment. 
For infection, the target is the 
pathogen; for cancer, it is the tumor; 
and for gastrointestinal bleeding, it is 
the bleeding vessel or ulcer. 

  While the success of this approach 
is undeniable, it leaves little room 
for contextual information. A young 
immuno-compromised man with 
pneumococcal pneumonia usually gets 
the same antibiotic treatment as an 
elderly woman with the same infection. 
The disease, and not the person 
affected by it, becomes the central 
focus. Our contemporary analytical 
tools are simply not designed to address 
more complex questions, and, thus, 
questions such as “how do a person’s 
sleeping habits, diet, living condition, 

comorbidities, and stress collectively 
contribute to his/her heart disease?” 
remain largely unanswered.

   Emphasis on homeostasis.  For 
decades, homeostasis has been a 
vital, guiding principle for medicine. 
Claude Bernard in 1865 and later 
Walter B. Cannon popularized this 
principle, expounding on the body’s 
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remarkable ability to maintain stability 
and constancy in the face of stress 
[3]. Since then, homeostasis has been 
incorporated into clinical practice. 
Illness is defi ned as a failed homeostatic 
mechanism, and treatment requires 
physicians to substitute for this failed 
mechanism by correcting deviations 
and placing parameters within normal 
range. This corrective treatment 
approach is true for a range of medical 
conditions, from hypothyroidism to 
hypokalemia to diabetes. 

  This interpretation of homeostasis, 
however, is biased by a reductionist 
viewpoint in two ways. First, the 
emphasis on correcting the deviated 
parameter (e.g., low potassium) 
belies the importance of systems-
wide operations. Either alternate, 
less intuitive targets may be more 
effective, or correction of the deviated 
parameter may itself have harmful 
system-wide effects. Existing evidence 
that demonstrates adverse effects of 
calcium for hypocalcemia [4,5] or 
blood pressure control for stroke-
related hypertension [6] points to 
the limitations of this homeostasis 
interpretation as a universal principle.

  Secondly, the exclusive focus on 
normal ranges belies the importance of 
dynamic stability. Because reductionism 
often disregards the dynamic 
interactions between parts, the system 
is often depicted as a collection of static 
components. Consequently, emphasis is 
placed on static stability/normal ranges 
and not on dynamic stable states, such as 
oscillatory or chaotic (seemingly random 
but deterministic) behavior. Circadian 
rhythms [7] are an example of 
oscillatory behavior, and complex heart 
rate variability [8–10] is an example 
of chaotic behavior. Failure to include 
these dynamic states in the homeostasis 

model may lead to treatments that are 
either ineffective or even detrimental. 

   Inexact risk modifi cation.  Since 
disease cannot always be predicted with 
certainty, health professionals must 
identify and modify risk factors. The 
common, unidimensional, “one-risk-
factor to one-disease” approach used 
in medical epidemiology, however, has 
certain limitations.

  An example is hypertension, a known 
risk factor for coronary heart disease. 
Guidelines suggest pharmacological 
and lifestyle treatment for individuals 
with systolic blood pressure greater 
than 140. This strategy is supported by 
evidence from the Framingham Study, 
which showed that men between 35 
and 64 years of age with systolic blood 
pressures greater than 140 were twice 
as likely to develop heart disease as 
compared to individuals with systolic 
blood pressure less than 140 [11]. 
However, given that nearly 70% of the 
American population is not affected by 
hypertension, up to 30% of coronary 
artery disease develops in individuals 
with normal blood pressure [11]. 
Conceivably, a large number of people 
at small risk may give rise to more 
cases of disease than a small number of 
people at high risk. This observation is 
termed the prevention paradox [12].

  To capture these missed cardiac 
events, the natural recourse is to 
progressively lower the blood pressure 
threshold for treatment. Consequently, 
the Joint National Committee on 
Prevention, Detection, Evaluation, and 
Treatment of High Blood Pressure 
lowered its initial diastolic blood 
pressure threshold of 105 in 1977 to 
90 in 1980, to 85 (for high normal) in 
1992, and to 80 (for prehypertension) 
in 2003. The cost of such a strategy 
is the unnecessary treatment of 

individuals who wouldn’t have 
developed coronary disease in the fi rst 
place. This problem originates from 
the constraints imposed by a one-risk 
to one-disease analysis and the inability 
to work with multiple risk factors and 
calculate their collective infl uences. 
If a more multidimensional analytical 
method were used, then more precise 
risk projections for individuals could be 
devised. 

   Additive treatments.  In reductionism, 
multiple problems in a system are 
typically tackled piecemeal. Each 
problem is partitioned and addressed 
individually. In coronary artery disease, 
for example, each known risk factor is 
addressed individually, whether it be 
hyperlipidemia or hypertension. The 
strategy is also extended to coexisting 
diseases, such as hypothyroidism, 
diabetes, and coronary artery disease. 
Each disease is treated individually, 
as if the treatment of one disorder 
(such as coronary artery disease) has 
minimal effects on the treatment of 
another (such as hypothyroidism). 
While this approach is easily executable 
in clinical practice, it neglects the 
complex interplay between disease and 
treatment. The assumption is that the 
results of treatments are additive rather 
than nonlinear.

  Limitations to Current Medical 
Science
  The science underlying our 
medical practices, from diagnosis 
to treatment to prevention, is based 
on the assumption that information 
about individual parts is suffi cient 
to explain the whole. But there are 
circumstances in which the complex 
interplay between parts yields a 
behavior that cannot be predicted 
by the investigation of the parts 

 Table 1.  Reductionism versus a Systems-Oriented Perspective  
Characteristic Reductionism Systems-Oriented Approach

Principle Behavior of a biological system can be explained by the properties 
of its constituent parts

Biological systems possess emergent properties that are only 
possessed by the system as a whole and not by any isolated part 
of the system

Metaphor Machine, magic bullet Network
Approach One factor is singled out for attention and is given explanatory 

weight on its own
Many factors are simultaneously evaluated to assess the dynamics 
of the system

Critical factors Predictors/associated factors Time, space, context
Model characteristics Linear, predictable, frequently deterministic Non-linear, sensitive to initial conditions, stochastic (probabilistic), 

chaotic 
Medical concepts Health is normalcy Health is robustness

Health is risk reduction Health is adaptation/plasticity
Health is homeostasis Health is homeodynamics

 DOI: 10.1371/journal.pmed.0030208.t001 
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alone. The failure to account for 
these circumstances is the common 
denominator for the explanations of 
why the aforementioned practices are, 
in many cases, inadequate. 

  So how should these complexities be 
addressed? Is there a formal method that 
can explain how the pieces create the 
whole? How do we shift our lens from 
the parts to the system? The answers 
to these questions may come from a 
relatively new branch of science called 
systems biology [13–16]. Systems biology 
was conceived to address the molecular 
complexities seen in biological systems. 
One major impetus for its creation was 
the human genome project. 

  Human Genome Project
  The completion of the human genome 
project in 2003, in addition to the 
development of high-throughput 
technologies such as DNA array 
chips, has led scientists to confront 
a challenge they could not address 
before; namely, how do genes interact 
to collectively create a system-wide 
behavior?

  The human genome contains 30,000 
to 35,000 genes [17]. Although this 
number is just fi ve times the number 
of genes in a unicellular eukaryote 
(e.g., approximately 6,000 genes 
in  Saccharomyces cerevisiae ) [18], the 
human genome encodes for nearly 100 
trillion cells in the human body [19]. 
The richness of information is derived 
not only in the genes themselves but 
also in the interaction between genes 
and between their respective products. 
The genes encode for messenger 
RNA, the messenger RNAs encode 
for proteins, and the proteins act as 
catalysts or secondary messengers, 
among other diverse functions. 
Between each hierarchical level, 
modifi cations (e.g., alternative splicing) 
are made, and at each hierarchical 
level (e.g., transcription), thousands of 
molecules interact with other molecules 
to create a complex regulatory network. 
What becomes evident from these 
molecular analyses is that phenotypic 
traits emerge from the collective action 
of multiple individual molecules [20]. 
Therefore, the previous notion that a 
single genetic mutation is responsible 
for most phenotypic defects is overly 
simplistic. Complex diseases such as 
cancer, asthma, or atherosclerosis 
cannot generally be explained by a 
single genetic mutation.

  Systems Biology: An Introduction
  The need to make sense of complex 
genetic interactions has led some 
researchers to shift from a component-
level to system-level perspective. This 
novel approach incorporates the 
technical knowledge obtained from 
systems engineering, which began 
with Norbert Weiner’s “cybernetics” 
in 1948 and Ludwig von Bertalanffy’s 
“General Systems Theory” in 1969 
[21,22]. The developing fi elds of 
chaos theory, nonlinear dynamics, and 
complex systems science, along with 
computational science, mathematics, 
and physics, have also contributed to 
the analytical armamentarium used by 
systems analysts.

  The intention of applying these 
theories to biological systems (termed 
“systems biology”) is to understand how 
properties emerge from the nonlinear 
interaction of multiple components 

(Table 2). How does consciousness 
arise from the interactions between 
neurons? How do normal cellular 
functions such as cellular division, 
cell activation, differentiation, and 
apoptosis emerge from the interaction 
of genes? These questions highlight the 
diffi culty of understanding complex 
biological systems—the moment the 
lens is directed toward the components 
of a biological system, the behaviors 
and properties of the whole system 
become obscure. Plainly said, one loses 
sight of the forest for the trees.

  Systems biology is an integrative 
approach that combines theoretical 
modeling and direct experimentation. 
Theoretical models provide insights 
into experimental observations, and 
experiments can provide data needed 
for model creation or can confi rm 
or refute model fi ndings. With this 
integrative approach, it becomes 

   E. coli  chemotaxis is an example of 
systems biology’s application (see Figure 
1). Chemotaxis is defi ned as directed 
motion of a cell toward increasing (or 
decreasing) concentrations of a particular 
chemical substance.  E. coli  has been 
observed to migrate toward areas of 
higher aspartate concentrations through 
a series of “runs” and “tumbles.” The 
“runs” are linear paths taken by the 
bacteria, while the “tumbles” are random 
rotations that reorient the bacteria. When 
bacteria reach higher concentrations 
of aspartate, time spent “running” in 
proportion to “tumbling” increases—the 
logic being that if higher concentrations 
of aspartate are encountered, the 
bacterium is on the right track and 
should continue in that direction. If the 
 E. coli  fails to detect increasing aspartate 
concentrations, the bacterium eventually 
exhibits “adaptation,” where it returns to 
the baseline “tumble and run” activities. 
This ensures that it does not continually 
head in the wrong direction.

  Conventional medical methods have, 
for more than a decade, been able to 
identify the enzymes and molecules 
involved in the chemotactic pathway. 
Despite this, little was known about how 
the interactions in this pathway translated 
to its known chemotactic behavior, 
namely the ability of  E. coli  to “adapt” in a 
large range of aspartate concentrations. 
Spiro, et al. [31] used systems methods 

in 1997 to provide a mechanistic 
explanation. They placed the involved 
enzymes into a mathematical equation 
(context), considered the relationship 
between these enzymes (space), 
and analyzed the activities for each 
enzyme with the use of computational 
tools (time). Increased temporal 
detections of aspartate led to reduced 
autophosphorylation rate of the aspartate 
receptor. This effect reduced the 
tumbling rate and increased the running 
time. When there was no increased 
detection of aspartate, methylation of 
the aspartate receptor occurred, which 
increased the autophosphorylation 
rate and caused the  E. coli  to return to 
prestimulus tumble-and-run activities 
(adaptation). Importantly, this adaptive 
behavior occurred at different aspartate 
concentrations, explaining how  E. 
coli  does not perpetually exist in an 
excited state, even at higher aspartate 
concentrations.

  Similar conceptual breakthroughs have 
been obtained with the use of systems 
methods in other biological phenomena, 
such as bacteriophage lysis-lysogeny 
[32], biological oscillations [33,34], 
circadian rhythms [35,36], and  Drosophila  
development [37–39]. In these situations, 
the incorporation of context, time, and 
space into the equation has provided 
information not otherwise obtained 
through structural information alone. 

 Box 1. Chemotaxis as an Example of Systems Biology’s Application 
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apparent that no single discipline 
is ideal to address systems biology. 
Scientists from molecular biology, 
computational science, engineering, 
physics, statistics, chemistry, and 
mathematics need to cooperate in 
order to explain how the biological 
whole materializes [23].

  While the fi eld of systems biology 
is young, it has been received 
with substantial enthusiasm. Many 
believe that, without a system-level 
understanding, the benefi ts of the 
genomic information cannot be fully 
realized. The perceived importance of 
this understanding is refl ected in the 
investments made by major academic 
and industrial centers within the past 
few years [24].

  Importance of Context, Space, 
and Time
  How is systems-level understanding 
achieved? The answer likely lies in 
the dynamic and changing nature of 
biological networks. Unlike the static 
depiction of many wiring network 
representations, both the molecular 
concentrations and enzyme activities 
are continually changing as a result 
of infl uences from other molecular 
substrates. The network is an 
interactive and dynamic web in which 
the properties of a single molecule are 
contingent on its relationship to other 
molecules and the activities of those 
other molecules within the network. 
Therefore, the behavior of the system 
arises from the active interactions 

of these biological components. To 
elicit the system-wide behavior, three 
factors need to be considered: (1) 
context, which values the inclusion of 
all components partaking in a process; 
(2) time, which considers the changing 
characteristics of each component; 
and (3) space, which accounts for the 
topographic relationships between and 
among components. Box 1 and Figure 
1 show an example of how systems 

methods—incorporating context, time, 
and space—allowed researchers to 
provide a mechanistic explanation for 
 Escherichia coli  chemotaxis.

  The three factors of context, time, 
and space play a vital role in systems 
science. Systems biologists consequently 
use tools such as differential equations, 
diffusion functions, computational 
models, and high throughput tools 
to incorporate one or more of these 
factors to address a research question. 
This approach differs from traditional 
medical methods, where the central 
focus is elaborating the instantaneous 
property of a component involved in 
a disease process. In many medical 
models, the process of data extraction, 
such as obtaining serum glucose level 
or blood pressure, can lead to loss of 
information on time, space, or context. 
Systems biologists contend that loss 
of this information leads to loss of 
rich information that would otherwise 
contribute to a better understanding of 
the systemic and dynamic behavior of 
the human body. 

  Systems Biology Concepts
  Several concepts have emerged in 
systems biology to describe properties 
occurring at the systems level. One 
prominent concept is robustness, 
defi ned as the ability to maintain 

 Table 2.  Overview of Systems Biology  
Aspect Description

Defi nition Systems biology represents the study of biological systems through the 
lens of the “whole.” It incorporates the dynamic relationships between the 
“parts.”

Predecessor General systems theory, cybernetics, information theory, molecular biology, 
and genetics.

Catalyst Human genome project, molecular high-throughput tools, advances in 
computer science.

Scientifi c disciplines Biology, medicine, physics, mathematics, computer science, engineering, 
chemistry, statistics.

Sample experiments  E. coli  chemotaxis [31, 40, 41], bacteriophage lysis-lysogeny [32], biological 
oscillation [33,42],  Drosophila  development [37–39]

Sample institutes Institute for Systems Biology (Seattle, Washington, United States of America)
Computation and Systems Biology Initiative (MIT, Cambridge, 
Massachusetts, United States of America) 
The Systems Biology Institute (Tokyo, Japan)
Department of Systems Biology (Harvard Medical School, Boston, 
Massachusetts, United States of America)
Institute for Molecular Systems Biology (Zurich, Switzerland)
The Ottawa Institute for Systems Biology (Ottawa, Canada)

 DOI: 10.1371/journal.pmed.0030208.t002 
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 Figure 1.  E. coli   Chemotaxis 
    E. coli  has been observed to migrate toward areas of higher aspartate concentrations through 
a series of “runs” and “tumbles” (see Box 1).
  Autophosph, autophosphorylation. 
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stable functioning despite various 
perturbations [25,26]. Natural systems 
specifi cally demonstrate an uncanny 
penchant for robustness, which, 
as many have argued, is necessary 
for natural systems to survive and 
procreate [27]. Robustness is attained 
by fi ve described mechanisms: 
feedback control, structural stability, 
redundancy, modularity, and 
adaptation (see Box 2) [13,28]. 
Biological systems across all scales, 
from cells to organisms, rely on a 
combination of these mechanisms to 
maintain a semblance of stability. The 
human body is no exception.

  The stability discussed in systems 
biology is distinct from the stability 
commonly perceived in clinical 
medicine. Medical practitioners often 
picture stability as an unwavering 
entity such that values are maintained 
within a specifi c, confi ned range. But 
stability in systems biology is revealed 
dynamically, and it is the  behavior  of 
the system rather than the  state  of the 
system that remains consistent. This 
dynamic stability can assume many 
forms, including homeostatic, bistable 
(having two stable states), oscillatory, 
or chaotic [29]. Normal biological 
functions can be classifi ed into one of 
these dynamic behaviors: for instance, 
bacteriophage lysis-lysogeny as bistable, 
circadian rhythms as oscillatory, or 
heart rate variability as chaotic. This 
varied perspective of stability is more 
extensive than the commonly accepted 
notion of homeostasis and may 

ultimately infl uence how treatments are 
deliberated.

  Lessons from Systems Biology
  The fundamental disconnect that 
exists between clinical medicine and 
systems biology largely stems from 
their disparate worldviews—one 
focuses on the parts and the other on 
the systems. As a consequence, the 
factors of time, space, and context, 
which are considered vital for a system-
level understanding, are not assigned 
the same level of importance in 
medicine as they are in systems biology. 
Moreover, system-level concepts such as 
robustness, stability, and variability do 
not have meaningful equivalents in the 
medical vernacular. The incorporation 
of such concepts into medicine may 
help address certain limitations 
and greatly enhance its therapeutic 
potential. The second article in 
this series will explore how systems 
medicine may be realized in practice. ! 
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 Box 2
   Feedback control:  Serves to correct 
deviations and restores the system to its 
natural behavior.

   Structural stability:  Explains for the 
stability that arises from the very nature 
of the network structure. For instance, 
the World Wide Web was shown to be 
resistant to random attacks to Web sites 
by virtue of its organization [30]. 

   Redundancy:  Allows for functionally 
equivalent units to substitute for one 
another in the event of a failure.

   Modularity:  Prevents amplifi cation of 
a perturbation by dividing function or 
structure into subunits or modules.

   Adaptation:  Promotes survival and 
functioning in a variety of environmental 
conditions.  
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 This is the second in a series of two articles that 
look at the lessons for clinical medicine from 
systems biology.

  In the fi rst article in this series, 
we examined the reductionist 
approach that pervades medicine 

and explained how a systems approach 
(as advocated by systems biology) 
may complement it [1]. In order for 
a systems perspective to have any 
practical clinical signifi cance, we must 
understand when a systems perspective 
is or is not helpful, and conversely 
when a reductionist approach is 
helpful. In addition, we must be able 
to envision how a systems perspective 
can be implemented to appreciate 
the potential benefi ts derived from its 
application. In this article, we address 
these issues and present a practical 
discussion of systems application to 
medicine.

  Indications for Systems Approach 
and Reductionism
  Reductionism, as a guiding principle, 
is tremendously helpful and useful. 
The problem with reductionism stems 
not from its use but from the wrongful 
assumption that it is the only solution. 
Reductionism becomes less effective 
when the act of dividing a problem 
into its parts leads to loss of important 
information about the whole. For 
instance, a complex machine such as an 
airplane or a computer may be divided 
into smaller and smaller fragments, but 
at some point, the individual parts fail 
to impart consequential information 
about the machine’s overall 
function. The primary side effect of a 
reductionist approach is that the act 
of reduction (from larger to smaller) 
disregards component–component 
interactions and the dynamics that 
result from them. Therefore, as a 
general rule, reductionism is less 
helpful for systems where interactions 
between components dominate the 
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components themselves in shaping the 
system-wide behavior (Table 1). 

  In clinical medicine, complex, 
chronic diseases such as diabetes, 
coronary artery disease, or asthma 
are examples where this rule may 
apply. In these examples, a single 
factor is rarely implicated as solely 
responsible for disease development or 
presentation. Rather, multiple factors 
are often identifi ed, and the disease 
evolves through complex interactions 
between them. Consequently, a 
perspective in which the interactions 
and dynamics are centrally integrated 
into the analytical methods may be 
better suited. Systems perspectives, 
unlike reductionisms, focus on these 
interrelationships and therefore may 
be the optimal method for complex 
chronic diseases.

  Where reductionism is helpful, 
when a systems approach is not, is 
when one or several components 
overwhelmingly infl uence the systems 
behavior. Diseases such as urinary 
tract infection, acute appendicitis, or 
aortic dissection are driven primarily 
by a single pathology amenable to 
a specifi c intervention. Arguably, 
these conditions would do poorly 
under a systems approach, where 
lengthy analysis and comprehensive 
data acquisition are often required. 
Reductionism works best when an 
isolatable problem exists and where a 
quick and effective solution is needed. 
For that reason, reductionism may 
generally be most effective for acute 
and simple diseases, whereas a systems 
approach may be most applicable to 
chronic and complex diseases.

  The Example of Diabetes
  Given that a systems approach is likely 
applicable to complex chronic diseases, 
how might it infl uence the treatment 
of a complex disease such as diabetes? 
Research has shown that diabetes is 
a multidimensional disorder. Factors 
such as genetics, infl ammation [2–7], 
PPAR-gamma [8], leptin [9], cortisol 
[10], diet [11], and body mass index, 
among others, have been implicated 
in some form with its pathogenesis. 
The fundamental distinctiveness 
of systems medicine is not just the 
recognition that these complex factors 
are important in disease management, 
but that they need to be incorporated 
in some meaningful way to treatment 
selection and delivery. The primary 

challenge tackled by systems scientists 
is the rigorous elucidation of how 
these multiple variables dynamically 
interact and how one can apply this 
understanding to affect the system and 
achieve a desirable end. 

  While this approach seems extremely 
complicated and diffi cult, the advent 
of computers and mathematical tools 
has opened avenues not deemed 
possible before. For the medical 
community, the more imminent hurdle 
may be our inability to envision and 
thus appreciate the potential benefi ts 
derived from the application of a 
systems approach. To obtain a glimpse 
of how systems principles will affect 
medicine, we consider three concepts 
central to systems medicine that are 
often overlooked through reductionist 
approaches: time, space, and context.

   Time.  Our present diagnosis 
of diabetes requires two separate 
documentations of fasting glucose 
over 6.9 mmol/L or a two-hour oral 
glucose tolerance test result above 
11.1 mmol/L. The criterion relies on 
a measurement obtained at a single 
point in time, ideally eight hours after 
a meal or two hours after a glucose 
load. The theoretical disadvantage of 
this defi nition is that the diagnosis is 
established much after the underlying 
abnormality has begun. To use 
the analogy of a blocked sink—the 
problem is defi ned only when the water 
overfl ows, despite the fact that the 
draining problem has occurred some 
time beforehand. A more sensitive 
method for detecting a problem may 
be to evaluate the rate of change in the 
water level—whether the water level 
steadily increases with time or whether 
it fails to decrease in response to a large 
water input—in other words, to assess 
the dynamics of the variable of interest. 

  While this example is a gross 
oversimplifi cation, it highlights a 

fundamental tenet of systems medicine, 
namely, that the dynamics may contain 
more revealing information about a 
system than static data alone. To apply 
this tenet to diabetes, one might assess 
the likelihood that glucose variability 
or the change in insulin levels over 
time may provide useful diagnostic 
information not otherwise obtained 
through traditional methods. Some 
evidence already exists to support this 
supposition. Healthy individuals show 
pulsatile insulin secretions of about six- 
to ten-minute periodic oscillations [12], 
whereas people with type 2 diabetes 
have impaired insulin oscillations [13], 
which also fail to entrain with repeated 
glucose infusions [14,15]. Interestingly, 
impaired pulsatile secretions have been 
detected in metabolically normal yet 
predisposed individuals (fi rst-degree 
relatives of people with type 2 diabetes) 
[16,17], suggesting that these dynamic 
evaluations may be more sensitive in 
detecting beta-cell dysfunction than 
traditional methods [18]. Because of 
the promise of dynamic analysis in 
diabetes, many other methods have also 
been evaluated [19–21]. 

  Because glucose levels are continually 
regulated through a dynamic balance 
between glucose-lowering factors (such 
as insulin) and glucose-elevating factors 
(such as glucagons, growth hormone, 
or epinephrine), the manner in which 
glucose varies over time may refl ect 
the functional health of the relevant 
metabolic pathways. The premise 
is that glucose regulatory pathways 
are inextricably interconnected and 
that any dysfunction in the pathway 
is refl ected in the glucose/insulin 
dynamics. The temporal changes 
of a variable contain hidden, useful 
information about the overall system. 
As a consequence, a systems approach 
to medicine will likely incorporate 
temporal variability into diagnosis and 

 Table 1.  Application of Reductionism versus Systems-Oriented Perspective to Medicine  
Characteristics Reductionism Systems-Oriented Perspective

Optimal Conditions where one or few components 
are responsible for the overall behavior of 
the system 

Conditions where interactions between 
components are responsible for the 
overall behavior of the system

Disease types Acute, simple diseases Chronic, complex diseases
Examples Urinary tract infection Diabetes

Appendicitis Coronary artery disease
Aortic aneurysm Asthma

Theoretical limitations Disregards component–component 
interactions and dynamics 

Costly in resources and time 

 DOI: 10.1371/journal.pmed.0030209.t001 
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treatment in a way that reductionist 
medicine has never done before.

   Space.  When chemstick glucose 
levels are obtained, there is an implicit 
assumption that the geographic 
distribution of glucose is uniform: 
A chemstick in the right fi nger is 
equivalent to a chemstick from the 
left fi nger or a venous puncture 
reading from an antecubital region. 
But glucose, even plasma glucose, 
possesses spatial differences [22] 
that are frequently overlooked in 
clinical practice. The same can be said 
about insulin injections. Injections 
in the thigh are often considered 
just as effective as injections in the 
abdominal wall, despite evidence 
indicating that insulin absorption and 
distribution differ at different sites 
[23–25]. The problem confronted by 
clinical medicine is not so much the 
recognition that these variations occur, 
but rather the inability to incorporate 
spatial information into treatment or 
diagnostic decisions.

  In systems theory, spatial variability, 
much like temporal variability, is valued 
for its potential to impart system-level 
information. Analytic tools such as 
diffusion equations and fl uid dynamics 
are frequently used to evaluate the 
spatiotemporal patterns of various 
systems. Consequently, for diabetes, the 
application of systems principles may 
promote investigation and enhance 
understanding of the spatial variations 
of glucose and insulin within the 
human body. With proper tools and 
analytical techniques, we may someday 
be able to determine where insulin 
injections are most effective, how 
bodily glucose distribution can predict 
risk of diabetes, and how certain foods 
lead to unhealthy overstimulation 
of certain susceptible beta-islet cells. 
The one caveat, however, is that 
spatial information, such as glucose 
distribution, is diffi cult to acquire and 
may explain why spatial variability of 
glucose remains largely unexplored. 
Nevertheless, a systems approach may 
provide a much-needed conceptual 
tool for the study of spatial infl uence in 
medicine and thus may inform health 
providers where optimal solutions exist.

   Context.  One of the principal 
challenges for medical practitioners 
will be to curb our instinctive 
inclination to focus on disease rather 
than the individual. In diabetes, for 
instance, we are inclined to focus on 

the symptom—hyperglycemia—and 
to deliver treatments aimed directly 
at lowering glucose. While this 
approach is highly effective, a systems 
approach to medicine may redirect 
our attention away from the elevated 
glucose per se, toward the contextual 
milieu that fosters it. Dietary habits, 
sleeping behavior, immune system, 
genetics, psychiatric condition, medical 
comorbidities, and other factors can 
be systematically integrated into a 
physician’s selection and delivery of 
treatment. The individual, not the 
disease, achieves central importance in 
systems medicine.

  However, with a systems perspective, 
will treatments truly change? How 
can a patient with diabetes  not  receive 
glucose-lowering agents? How will 
“disease” be conceptualized, and 
will it be defi ned any differently? 
Fortunately, studies in systems biology 
have addressed similar questions and 
provide two important lessons for 
clinical medicine: (1) complex diseases 
may represent many different processes 
and (2) complex diseases may have 
varied and sometimes unintuitive 
treatments. 

  Systems biology’s fi rst lesson for 
clinical medicine can be derived from 
the RNA expression profi les of diffuse 
B cell lymphoma. The lymphoma’s 
genetic profi le yielded an unexpected, 
yet important discovery—namely 
that for a disorder once considered a 
single entity, at least three different 
genetic profi les exist: germinal-center 
B cell–like, activated B cell–like, and 
type 3 diffuse large B cell lymphoma 
[26]. Genetic profi les of other 
disorders—such as breast cancer [27], 
non-small-cell lung carcinoma [28], 
and acute lymphoblastic leukemia 
[29]—have similarly shown the 
existence of multiple subtypes. The 
conceptual breakthrough afforded by 

these fi ndings is the idea that seemingly 
single phenotypic entities can have 
multiple etiologic or pathologic 
processes. For clinical medicine, this 
may mean that diseases such as diabetes 
actually represent many different 
processes that do not become apparent 
until the composite factors (i.e., the 
context) are considered. Therefore, 
two patients with type 1 diabetes who 
have identical presentations may 
nevertheless have different pathogenic 
processes, and thus should be regarded 
differently. 

  The study of diffuse B cell lymphoma 
also showed that the three identifi ed 
subtypes have varied prognoses and 
responsiveness to chemotherapy 
[26,30,31]. Consequently, systems 
biology’s lesson can be extended one 
step further, to suggest that not only do 
different processes exist for a specifi c 
disease but that each process should 
be treated or handled differently. This 
notion encourages the personalization 
or individualization of medicine. 
One patient with type 2 diabetes may 
respond best to insulin, for example, 
while another may not. As a corollary 
to this statement, some patients with 
diabetes may not require glucose-
lowering agents at all, but instead may 
benefi t from a less obvious treatment. 
The determination of these optimal 
treatments will rest on the rigorous 
evaluation of the complex factors 
inherent in each and every patient. 

  Systems Medicine in Practice
  Systems medicine, as we see, begins 
to explore medicine beyond linear 
relationships and single parameters. 
Systems medicine involves multiple 
parameters obtained across multiple 
time points and spatial conditions 
to achieve a holistic perspective of 
an individual. The clinical practice 
that results from this paradigm will 

 Table 2.  Approaching Diabetes within a Systems Perspective  
Factor Systems-Oriented Practice

Time Assessing temporal variability of insulin or glucose as a means to predict or diagnose diabetes
Administering insulin at critical time junctures (aside from pre-meal/pre-sleep times) 
Assessing spatial distribution of insulin or glucose as a means to predict or diagnose diabetes

Space Administering insulin at sites with optimal effect
Context Using multiple parameters to determine the type of diabetes (beyond types 1 and 2) affecting 

the patient 
Administering individualized, sometimes unintuitive treatments (e.g., salicylates for certain 
individuals)

 DOI: 10.1371/journal.pmed.0030209.t002 
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be distinctly different from the status 
quo, particularly for complex diseases, 
as shown by our example of diabetes 
(Table 2). In general, treatments within 
systems medicine can be characterized 
by several distinguishing features 
(Figure 1).

   Individualized treatments.  Instead 
of formulating treatments according 
to disease, a systems clinician may 
prescribe treatments specifi cally 
targeted to individuals and their 
present conditions. 

   Minimized interventions.  Treatments 
can deliver the “biggest bang for 
the buck” so that the least invasive 
intervention may yield the greatest 
system-wide benefi t, maximize the 
body’s self-healing abilities, and 
minimize side effects. 

   Multidimensional uses of 
medications.  Medications may be used 
for unintended purposes because 
nonlinear, unintuitive relationships 
exist between pathogenic factors and 
disease. In diabetes, for example, 
evidence suggests the benefi ts of 
salicylates for glucose control in certain 
individuals [32–34].

   Time-sensitive treatments.  The 
human body, like most living systems, 
has cyclical variations that may affect 
treatment effi cacy. To maximize 
effectiveness, treatments can be 
delivered at selective times. Cancer 
chronotherapy is a working example: 
chemotherapeutic agents given on 
a timed regimen are more effective 
than a standard treatment approach 
[35–37]. 

   Space-sensitive treatments.  The 
effi cacy of certain treatments may 
depend on where the treatment is 
delivered. Future treatments may be 
localized to a specifi c part of the body 
to maximize system-wide effi cacy. 

   Synergistic treatments.  Use of more 
than one treatment or modality can be 
given so that the effects are synergistic 
and not antagonistic or merely additive.

   Probabilistic forecasting.  The 
probability of the success or failure of a 
particular treatment may be calculated 
specifi cally for an individual. 

   Temporary treatments.  Chronic 
treatments may be unnecessary. In 
systems biology, biological systems are 
understood to assume certain dynamic 
states—or “attractor states” [38,39]. 
Disease may represent certain attractor 
states, while health may represent 
others. If so, it is theoretically possible 

to affect the system dynamics and 
transform a diseased state to a healthy 
one through limited interventions [40]. 
Because these states are effectively 
stable, chronic treatments may be 
unnecessary. 

  These practices and concepts are 
not new to medical systems. Medical 
traditions such as traditional Chinese 
[41], Native American [42], and 
certain Western medicines have for 
centuries incorporated these practices 
in their care of patients, mainly due 
to the philosophical belief that the 
world (including humans) is dynamic 
and interactive. Unlike modern 
systems medicine, however, human 
intuition and observation rather than 
mathematical/computational tools 
served as the basis for advancing 
medical knowledge.

  Barriers to Systems Medicine
  Widespread benefi ts of systems 
medicine will not be realized until 
six key barriers are overcome. First, 
the network relationships will need to 
be elaborated in detail. In diabetes, 
for instance, we lack the in-depth 
knowledge of how diet, infl ammation, 
PPAR-gamma, genetics, and other 
factors interrelate and infl uence each 
other’s behavior. Secondly, a feasible 
and cost-effective means to acquire 
comprehensive data will need to be 
developed. Clinical medicine at the 
present moment lacks an equal to the 
DNA array chip that enables numerous 
parameters to be economically 
obtained at once. In addition, we 
lack the means to obtain measures 
across multiple temporal and spatial 
conditions without causing patient 
inconvenience and excessive costs. 
Third, the optimal balance between 
too little information and too much 
information needs to be established. 
Often, accumulation of information 
beyond a certain point may contribute 
to costly expenditures without 
adding any effective understanding 
of the system. Fourth, the analytical 
tools for determining how to affect 
biological networks and obtain the 
desired effect need to be perfected. 
How should we calculate the needed 
adjustments to our patients’ diets 
to minimize their pancreatic beta-
cell loss? The mathematical and 
computational tools are available but 
still imperfect. Fifth, the theoretical 
and experimental methods should 

be effectively integrated in order 
for systems science to truly advance. 
Finally, complex analysis is inherently a 
long-term, broad-based investment. To 
investors and researchers accustomed 
to immediate, predictable results, 
this consideration may present the 
greatest barrier, causing many to doubt 
whether the not-so-apparent benefi ts 
merit further fi nancial or temporal 
commitment. 

  Despite these challenges, the 
realization of systems medicine may 
not be as distant as many may think. 
Already a computer program called 
Archimedes has been developed for 
the complex modeling of diabetes 
and predicts diabetes-related clinical 
outcomes with uncanny accuracy 
[43,44]. Archimedes is just a sample of 
the many more systems-level programs 
that will likely emerge within the next 
fi ve to ten years.

  Conclusion
  Systems medicine encompasses a 
broad scope of topics, many of which 
have been untouched in this two 
part series. Examples include scaling, 
stochasticity, attractor states, plasticity, 
systems defi nition of health, and many 
others. The challenges of incorporating 
systems science into medicine are 
diffi cult but not insurmountable. In 
fact, systems biologists, who deal with 
thousands of genes and proteins, may 
arguably be confronted with a much 
more daunting task. Nevertheless, 
systems biologists have recognized the 
necessity of a systems perspective. It is 
time that physicians, clinical researchers, 
physiologists, and epidemiologists 
did the same. The specifi c task to be 
faced is the system-level understanding 
of human health and disease at the 
organ, organism, and community level. 
This effort has great potential for the 
advancement of medicine. ! 
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